IL7 increases targeted lipid nanoparticle-mediated mRNA expression in T cells in vitro and in vivo by enhancing T cell translation

Adrian Bot³, Barbara Mui⁶, Ying Tam⁶, Drew Weissman⁴, Carl H. June¹, Steven M Albelda^{1,2}, Hamideh Parhiz⁴

¹Center for Cellular Immunology, Department of Medicine, University of Pennsylvania, Philadelphia USA, ³Capstan Therapeutics, San Diego, CA, ⁴Division of Infectious Diseases, Perelman School of Medicine, University of Pennsylvania, Philadelphia PA, USA, ⁵Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand, ⁶ Acuitas Therapeutics, Vancouver, British Columbia, Canada

BACKGROUND

- Ex vivo engineering of cells is a labor intensive and costly process
- Targeted lipid nanoparticles (tLNP) provide a useful and customizable strategy to deliver RNA to specific cell types based on the expression of cell surface markers to transfect them *in situ*

1. LIPID NANOPARTICLE

2. TARGETING ANTIBODY

3. RNA PAYLOADS

- tLNP efficacy is limited by uptake in the endolysosomes, mRNA release and / or translation of the mRNA to protein – all influenced by the metabolic and activation state of the cells
- It is unknown what 'threshold level' of transfected cells is required for therapeutic effects in both preclinical and clinical contexts.
- Therefore, we investigated whether activating or modulating T cells could improve tLNP transfection effectiveness, leading to increase protein expression levels of the mRNA cargo

METHODS

- tLNP conjugated with a CD5 targeting antibody to transfect mouse CD4+ and CD8+ T cells.
- mRNA cargo coding for the model reporter protein mCherry and detected using flow cytometry
- For RNA sequencing, CD8 T cells were isolated from the spleens of mice and cultured with IL7 or IL15 for 48 hours

1.CD5/mCherry tLNP transfect between 5-15% of T cells in vivo in naive mice

Figure 1. Mice were given 10 µg of IgG or anti-CD5-targeted LNP i.v with spleen and lymph nodes collected 24 hours later. (A-B) Percent mCherry⁺ CD4⁺ (A) or CD8⁺ (B) T cells in the spleen. (C-D) Percent mCherry⁺ CD4⁺ (C) or CD8⁺ (D) T cells in the lymph node. One-way ANOVA with Sidak's test was used for multiple comparisons. *p < 0.05, **p<0.01, ***p<0.001

Caitlin M Tilsed^{1,2}, Barzan A Sadiq³, Tyler E. Papp⁴, Phurin Areesawangkit^{1,2,5}, Kenji Kimura^{1,2}, Estela Noguera-Ortega^{1,2}, John Scholler¹, Nicholas Cerda⁴, Haig Aghajanian³,

cells in vitro in the presence of IL2, IL7 or IL15. Media treated and activated T cells were used as controls. One-way ANOVA with Sidak's test was used for multiple comparisons. *p < 0.05, **p<0.01, ***p<0.001, ****p<0.0001

(NES) indicates pathway is upregulated in IL15 treated cells while a positive NES indicated pathway is upregulated in IL7 treated cells. FDR (-log10padj).

Pathways associated with translation are upregulated in T cells treated with IL7, an observation previously unreported.

IN COLLABORATION WITH

